Surjektifitas Pemetaan Eksponensial untuk Grup Lie Heisenberg yang Diperumum
نویسندگان
چکیده
The Heisenberg Lie Group is the most frequently used model for studying representation theory of groups. This group modular-noncompact and its algebra nilpotent. elements can be expressed in form matrices size 3×3. Another specialty also inherited by three-dimensional called algebra. whose Algebra extended to dimension 2n+1 generalized it denoted H h_n. In this study, surjectiveness exponential mapping was studied with respect h_n=⟨x ̅,y ̅,z ̅⟩ bracket given [X_i,Y_i ]=Z. purpose research prove characterization subgroup results were obtained that if ⟨x ̅ ⟩=:V⊆h_n a subspace set {e^(x_i ) e^(x_j ┤| x_i,x_j∈V }=:L⊆H then L=H consequently Lie(L)≠V.
منابع مشابه
Fusi Citra Satelit Multi-temporal Dengan Non-iteratif Psedopolar Fourier Transform
Pembuatan peta dari citra satelit biasanya mengalami kesulitan jika hanya memakai sebuah citra. Hal ini dikarenakan seringnya muncul gangguan (misalnya berupa awan) yang berada di atas suatu wilayah. Biasanya, para ahli geografi melakukan fusi citra satelit multi-temporal untuk membuat peta wilayah yang terbebas dari gangguan tersebut. Penelitian ini bertujuan untuk melakukan fusi pada citra sa...
متن کاملYang-mills for Quantum Heisenberg Manifolds
We consider the Yang-Mills problem for a quantum Heisenberg manifold, which is a C∗-algebra defined by the (strict) deformation quantization of the ordinary Heisenberg manifold, in the setting of non-commutative differential geometry following Connes and Rieffel [Co] [Co1]. 1. Preliminaries Classical Yang-Mills theory is concerned with the set of connections (i.e. gauge potentials) on a vector ...
متن کاملHarmonic analysis on Heisenberg-Clifford Lie supergroups
We define a Fourier transform and a convolution product for functions and distributions on Heisenberg–Clifford Lie supergroups. The Fourier transform exchanges the convolution and a pointwise product, and is an intertwining operator for the left regular representation. We generalize various classical theorems, including the Paley–Wiener–Schwartz theorem, and define a convolution Banach algebra.
متن کاملHeisenberg–Lie commutation relations in Banach algebras
Given q1, q2 ∈ C \ {0}, we construct a unital Banach algebra Bq1,q2 which contains a universal normalized solution to the (q1, q2)-deformed Heisenberg–Lie commutation relations in the following specific sense: (i) Bq1,q2 contains elements b1, b2, and b3 which satisfy the (q1, q2)-deformed Heisenberg–Lie commutation relations (that is, b1b2 − q1b2b1 = b3, q2b1b3 − b3b1 = 0, and b2b3 − q2b3b2 = 0...
متن کاملLie Symmetries of Yang-Mills Equations
We investigate Lie symmetries of general Yang-Mills equations. For this purpose, we first write down the second prolongation of the symmetry generating vector fields, and compute its action on the Yang-Mills equations. Determining equations are then obtained, and solved completely. Provided that Yang-Mills equations are locally solvable, this allows for a complete classification of their Lie sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jambura Journal of Mathematics
سال: 2023
ISSN: ['2654-5616', '2656-1344']
DOI: https://doi.org/10.34312/jjom.v5i1.16721